En realidad creo, que esto tampoco es correcto. La probabilidad no es a condición de fallo (1/6+5/6*1/6). Ya que puedes sacar 1/6 en la primera o en la segunda tirada solo dependiendo de si has pasado o no. Lo que estamos calculando es la posibilidad de sacar un seis (o dos) al tirar dos dados, uno detrás del otro sin importarle al segundo lo que saques en el primero (depende de si pasas no de si eres expulsado en la primera tirada). Aunque no estoy del todo seguro.Dlsk escribió:El cálculo correcto para los que tenga curiosidad se hace asi:
tienes un 1/6 de posiblidades de que te echen en las armaduras. Y 5/6 de posibildiades de que no te echen. Correcto. Ahora, si no te echan, vuelves a tirar para la herida, que tienes 1/6 de posibilidades de que echen, pero ese 1/6 se da en el caso de que en la primera tirada no te hayan echando, es decir, es 1/6 sobre los 5/6 de que no te echen en la primera vez. Con lo cual es:
1/6 + (1/6 * 5/6) lo que es aproximadamente 0,30. En vez de los 0,33% que serían si los sumas directamente (de ahí que dijera que "el calculo facil" era aproximadamente 2/6 )
Probabilidades
Moderador: Admins
Soy el peor jugador del Blood Bowl que conozco y verdadero adepto de Nuffle.
Ah, también soy admin, temed mi voz roja insensatos.
- monkey d luffy
- Experimentado
- Mensajes: 995
- Registrado: Vie Feb 06, 2009 5:16 pm
- #NAF: 16629
- Ubicación: Granada
- Contactar:
- monkey d luffy
- Experimentado
- Mensajes: 995
- Registrado: Vie Feb 06, 2009 5:16 pm
- #NAF: 16629
- Ubicación: Granada
- Contactar:
Yoric, en eso fijo vamos bien:
Son 36 resultados posibles. (1-1, 1-2, 1-3... 2-1. 2-2, 2-3... etc).
De los cuales solo 6 son dobles (1-1, 2-2, 3-3, 4-4, 5-5 y 6-6)
Entonces 6/36 = 1/6.
Con lo que ESA premisa es correcta.
Son 36 resultados posibles. (1-1, 1-2, 1-3... 2-1. 2-2, 2-3... etc).
De los cuales solo 6 son dobles (1-1, 2-2, 3-3, 4-4, 5-5 y 6-6)
Entonces 6/36 = 1/6.
Con lo que ESA premisa es correcta.
Soy el peor jugador del Blood Bowl que conozco y verdadero adepto de Nuffle.
Ah, también soy admin, temed mi voz roja insensatos.
- monkey d luffy
- Experimentado
- Mensajes: 995
- Registrado: Vie Feb 06, 2009 5:16 pm
- #NAF: 16629
- Ubicación: Granada
- Contactar:
Osea se tendria 1/6 al tirar armadura y un 1/6 de todas las posibles tiradas que pasen la armadura, osea aumentarian las probabilidades o se reducirian sobre el 1/3 final.Kafre escribió:En realidad creo, que esto tampoco es correcto. La probabilidad no es a condición de fallo (1/6+5/6*1/6). Ya que puedes sacar 1/6 en la primera o en la segunda tirada solo dependiendo de si has pasado o no. Lo que estamos calculando es la posibilidad de sacar un seis (o dos) al tirar dos dados, uno detrás del otro sin importarle al segundo lo que saques en el primero (depende de si pasas no de si eres expulsado en la primera tirada). Aunque no estoy del todo seguro.Dlsk escribió:El cálculo correcto para los que tenga curiosidad se hace asi:
tienes un 1/6 de posiblidades de que te echen en las armaduras. Y 5/6 de posibildiades de que no te echen. Correcto. Ahora, si no te echan, vuelves a tirar para la herida, que tienes 1/6 de posibilidades de que echen, pero ese 1/6 se da en el caso de que en la primera tirada no te hayan echando, es decir, es 1/6 sobre los 5/6 de que no te echen en la primera vez. Con lo cual es:
1/6 + (1/6 * 5/6) lo que es aproximadamente 0,30. En vez de los 0,33% que serían si los sumas directamente (de ahí que dijera que "el calculo facil" era aproximadamente 2/6 )
En eso es donde me pierdo, ya no se si aumentan o reducen.
Un saludete a todos
Es que el problema es que una vez que me salga el 1 (1/6) solo me vale que en el otro tambíen me salga un 1 ((1/6)/6), es ahi donde veo el fallo de la premisa.Kafre escribió:Yoric, en eso fijo vamos bien:
Son 36 resultados posibles. (1-1, 1-2, 1-3... 2-1. 2-2, 2-3... etc).
De los cuales solo 6 son dobles (1-1, 2-2, 3-3, 4-4, 5-5 y 6-6)
Entonces 6/36 = 1/6.
Con lo que ESA premisa es correcta.
- monkey d luffy
- Experimentado
- Mensajes: 995
- Registrado: Vie Feb 06, 2009 5:16 pm
- #NAF: 16629
- Ubicación: Granada
- Contactar:
Yorick escribió:Es que el problema es que una vez que me salga el 1 (1/6) solo me vale que en el otro tambíen me salga un 1 ((1/6)/6), es ahi donde veo el fallo de la premisa.Kafre escribió:Yoric, en eso fijo vamos bien:
Son 36 resultados posibles. (1-1, 1-2, 1-3... 2-1. 2-2, 2-3... etc).
De los cuales solo 6 son dobles (1-1, 2-2, 3-3, 4-4, 5-5 y 6-6)
Entonces 6/36 = 1/6.
Con lo que ESA premisa es correcta.
A ese 1/36 se sumas si te sale primero un dos y luego otro (1/36) y asi sucesivamente con el 3,4,5 y 6 por tanto 1/36 +1/36 + 1/36 +1/36+ 1/36 + 1/36= 6/36 o 1/6
Os estais liando cosa mala.
Tranquilidad.
Las tiradas se hacen con dos dados. No con uno solo. La posibilidad de que el resultado de un dado sea igual que el del anterior es de 1/6 (solo uno de los 6 resultados posibles del segundo dado es igual que el anterior).
Esos dos dados dan un numero de resultados finitos. En concreto 36 Contemos:
11,12,13,14,15,16 (6)
21,22,23,24,25,26 (6)
31,32,33,34,35,36 (6)
41,42,43,44,45,46 (6)
51,52,53,54,55,56 (6)
61,62,63,64,65,66 (6)
Solo hay también un número limitado de resultados dobles, en concreto 6 (los que están en negrita)
¿Qué posibilidad hay de que salga uno de esos dobles? 6/36 = 1/6.
Tranquilidad.
Las tiradas se hacen con dos dados. No con uno solo. La posibilidad de que el resultado de un dado sea igual que el del anterior es de 1/6 (solo uno de los 6 resultados posibles del segundo dado es igual que el anterior).
Esos dos dados dan un numero de resultados finitos. En concreto 36 Contemos:
11,12,13,14,15,16 (6)
21,22,23,24,25,26 (6)
31,32,33,34,35,36 (6)
41,42,43,44,45,46 (6)
51,52,53,54,55,56 (6)
61,62,63,64,65,66 (6)
Solo hay también un número limitado de resultados dobles, en concreto 6 (los que están en negrita)
¿Qué posibilidad hay de que salga uno de esos dobles? 6/36 = 1/6.
Soy el peor jugador del Blood Bowl que conozco y verdadero adepto de Nuffle.
Ah, también soy admin, temed mi voz roja insensatos.
Perdón por la pesadez pero me he rayado:
"Si A y B son sucesos cualesquiera
P(AUB) = P(A) + P(B) - P(A∩B)
Es decir la probabilidad de que ocurra la unión de dos sucesos es la suma de las probabilidades individuales menos la probabilidad de la intersección."
En nuestro caso serio:
P(A): Sacar un numero cualesquiera (1).
P(B): Sacar el mismo numero que A (1/6).
Creo que teniais razón
http://www.ugr.es/~jsalinas/weproble/T2res.PDF
"Si A y B son sucesos cualesquiera
P(AUB) = P(A) + P(B) - P(A∩B)
Es decir la probabilidad de que ocurra la unión de dos sucesos es la suma de las probabilidades individuales menos la probabilidad de la intersección."
En nuestro caso serio:
P(A): Sacar un numero cualesquiera (1).
P(B): Sacar el mismo numero que A (1/6).
Creo que teniais razón
http://www.ugr.es/~jsalinas/weproble/T2res.PDF
Última edición por Yorick el Mar Jul 28, 2009 11:12 am, editado 1 vez en total.
Tu estas planteando aquí que tirado un dado ¿Cual es la posibilidad de que salga el mismo numero en el siguiente? No estás tirando dos dados al mismo tiempo.Yorick escribió:Perdón por la pesadez pero me he rayado:
"Si A y B son sucesos cualesquiera
P(AUB) = P(A) + P(B) - P(A∩B)
Es decir la probabilidad de que ocurra la unión de dos sucesos es la suma de las probabilidades individuales menos la probabilidad de la intersección."
En nuestro caso serio:
P(A): Sacar un numero cualesquiera (1).
P(B): Sacar el mismo numero que A (1/6).
y ahora un alma caritativa que se acuerde de las matemáticas que me lo explique y yo le explico si quiere la CDU.
P(A)=1/6 Hay una probabilidad entre 6 de sacar el mismo resultado.
Este problema no es aplicable a este caso en concreto.
Soy el peor jugador del Blood Bowl que conozco y verdadero adepto de Nuffle.
Ah, también soy admin, temed mi voz roja insensatos.
no es tan complicado....
Probabilidad de que te lo echen en la tirada de armadura 1/6.
hasta aqui todo el mundo esta de acuerdo.
Probabilidad de que te lo echen en la tirada de herida... aqui la cosa se complica.
1ª condición.. que no te lo hayan echado en la 1ª tirada (así evitamos "solapes" y podemos sumar las 2 probabilidades)
2ª condición... que pases la armadura
3ª condición que saques el doble
Así la probabilidad será P1*P2*P3 donde claramente P1=5/6 y P3=1/6... P2 depende de la armadura y los apoyos que pongas... supongamos un caso estandar: armadura 8 y 3 apoyos, debes sacar 6 o mas, total 26/36.
La probabilidad de ser expulsado:
1/6 + 5/6*26/36*1/6=0,267 luego en este caso un 26,7%
La probabilidad variara según la armadura del pisado y los apoyos (y la habilidad de reatrero...) pero básicamente fluctuará entre:
1/6+ 5/6*1/6=11/36 = 30´5% => en el caso de tener tantos apoyos que pases seguro la armadura (el resultado minimo es 2 y puedes apoyar hasta con 7...)
1/6=16,7% = en el caso de no poder pasar de ningun modo la armadura (ya se que es estupido)... el resultado maximo es 12 y te pueden apoyar en contra...
Probabilidad de que te lo echen en la tirada de armadura 1/6.
hasta aqui todo el mundo esta de acuerdo.
Probabilidad de que te lo echen en la tirada de herida... aqui la cosa se complica.
1ª condición.. que no te lo hayan echado en la 1ª tirada (así evitamos "solapes" y podemos sumar las 2 probabilidades)
2ª condición... que pases la armadura
3ª condición que saques el doble
Así la probabilidad será P1*P2*P3 donde claramente P1=5/6 y P3=1/6... P2 depende de la armadura y los apoyos que pongas... supongamos un caso estandar: armadura 8 y 3 apoyos, debes sacar 6 o mas, total 26/36.
La probabilidad de ser expulsado:
1/6 + 5/6*26/36*1/6=0,267 luego en este caso un 26,7%
La probabilidad variara según la armadura del pisado y los apoyos (y la habilidad de reatrero...) pero básicamente fluctuará entre:
1/6+ 5/6*1/6=11/36 = 30´5% => en el caso de tener tantos apoyos que pases seguro la armadura (el resultado minimo es 2 y puedes apoyar hasta con 7...)
1/6=16,7% = en el caso de no poder pasar de ningun modo la armadura (ya se que es estupido)... el resultado maximo es 12 y te pueden apoyar en contra...
Nick NAF: delos
Nº NAF: 10483
[img]http://i45.tinypic.com/etfj9t.jpg[/img]
Nº NAF: 10483
[img]http://i45.tinypic.com/etfj9t.jpg[/img]
-
- Loner
- Mensajes: 10
- Registrado: Sab Feb 23, 2008 6:39 pm
Hola, no estoy muy seguro de postear esto porque a lo mejor lo lio todo mas, pero las probabilidades de que te lo expulsen, no estarian tambien influenciadas por la armadura del tipo en cuestion y de la cantidad de gente que ayude al que pisa?
Quiero decir, no estais sacando las posibilidades "finales" de que te expulsen al tio, solo las posibilidades que hay de sacar dobles en una tirada de 2d6
A ver si me explico...
1/6 para que te expulsen tirando armadura, hasta ahi correcto, pero si la posibilidad de que te expulsen se dobla al pasar la armadura, el resultado "final" de posibilidad de que te expulsen al tio se ve influenciado por la facilidad de pasar la armadura del que esta en el suelo puesto que eso es lo que te condiciona hacer la 2º tirada....
A mi entender; hay mas posibilidades de que te expulsen por pisar a un tio de armadura 5 que a uno de armadura 9 por ejemplo...
PD: soy de artes asi que no me apedreeis mucho....
PD2: postearon mientras escribia esto ^^U ya esta todo dicho....
Quiero decir, no estais sacando las posibilidades "finales" de que te expulsen al tio, solo las posibilidades que hay de sacar dobles en una tirada de 2d6
A ver si me explico...
1/6 para que te expulsen tirando armadura, hasta ahi correcto, pero si la posibilidad de que te expulsen se dobla al pasar la armadura, el resultado "final" de posibilidad de que te expulsen al tio se ve influenciado por la facilidad de pasar la armadura del que esta en el suelo puesto que eso es lo que te condiciona hacer la 2º tirada....
A mi entender; hay mas posibilidades de que te expulsen por pisar a un tio de armadura 5 que a uno de armadura 9 por ejemplo...
PD: soy de artes asi que no me apedreeis mucho....
PD2: postearon mientras escribia esto ^^U ya esta todo dicho....
Creo que Delos explico eso también, y muy bien por cierto:
Después de tu PD" lo mio sobraDelos escribió:1ª condición.. que no te lo hayan echado en la 1ª tirada (así evitamos "solapes" y podemos sumar las 2 probabilidades)
2ª condición... que pases la armadura
3ª condición que saques el doble
Así la probabilidad será P1*P2*P3 donde claramente P1=5/6 y P3=1/6... P2 depende de la armadura y los apoyos que pongas... supongamos un caso estandar: armadura 8 y 3 apoyos, debes sacar 6 o mas, total 26/36.